Using ARM Data to Evaluate Convection-Permitting Simulations on the Summertime Surface Climate Over the Central United States LLNL: Hongchen Qin, Hsi-Yen Ma, Steve Klein PNNL: Zhe Feng, Huancui Hu, Xiaodong Chen, Ruby Leung This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM release number: LLNL-POST-823084. - Convection-permitting (4-km horizontal, 65 vertical layers) WRF simulations with Morrison and Thompson microphysics, covering 2011 May-Aug [Feng et al. 2018]. - Biases: WRF_{Morrison} < WRF_{Thompson} in magnitude and spatial extent. Zoom in onto the ARM SGP site: - T_{2m} warm biases occur throughout the diurnal cycle, and WRF_{Morrison} performs a bit better than WRF_{Thompson}. - T_{2m} bias is 2.5 K for WRF_{Morrison} and 3.2 K for WRF_{Thompson}. - Contribution from the Evaporative Fraction (EF) term is 1.0 K (40%) 298 in WRF_{Morrison} and 2.1 K 296 (66%) in WRF_{Thompson} 294 respectively. ## Rainfall from MCSs, soil moisture and the EF pathway Accumulated precip, mm | ARM SGP Accumulated precip decomposition, mm | ARM SGP - From May to late July, both simulations underestimate accumulated rainfall. (WRF_{Thompson} is worse than WRF_{Morrison}). - Categorical decomposition: differences in the accumulated precip are driven by rainfall from MCSs. - Both simulations tend to have soil moisture deficit (WRF_{Thompson} is dryer than WRF_{Morrison} during Jul-Aug). - Comparing to WRF_{Morrison}, WRF_{Thompson} has less accumulated precip, lower EF values (not shown) and larger T_{2m} warm biases.